Genetic Tuning of PID Controllers Using a Neural Network Model: A Seesaw Example

نویسنده

  • Chia-Ju Wu
چکیده

When genetic algorithms (GAs) are applied for PID parameter tuning, since the PID parameters are adjusted almost randomly, it is possible that the plant will be damaged due to abrupt changes in PID parameters. To solve this problem, a neural network will be used to model the plant and the genetic tuning procedure will be performed on the neural network instead of the plant. After determining the PID parameters in this off-line manner, these gains are then applied to the plant for on-line control. Moreover, considering that the neural network model may not be accurate enough, a method is also proposed for on-line fine-tuning of PID parameters. To show the validity of the proposed method, a seesaw system that has one input and two outputs will be used for experimental evaluation,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Offline Auto-Tuning of a PID Controller Using Extended Classifier System (XCS) Algorithm

Proportional + Integral + Derivative (PID) controllers are widely used in engineering applications such that more than half of the industrial controllers are PID controllers. There are many methods for tuning the PID parameters in the literature. In this paper an intelligent technique based on eXtended Classifier System (XCS) is presented to tune the PID controller parameters. The PID controlle...

متن کامل

Pid Autotuning Using Neural Networks and Model Reference Adaptive Control

This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application. Copyright © 2002 IFAC.

متن کامل

Discrete PID Controller Tuning Using Piecewise-Linear Neural Network

PID controller (which is an acronym to “proportional, integral and derivative”) is a type of device used for process control. As first practical use of PID controller dates to 1890s (Bennett, 1993), PID controllers are spread widely in various control applications till these days. In process control today, more than 95% of the control loops are PID type (Astrom et al., 1995). PID controllers ha...

متن کامل

Orthogonal Simulated Annealing Algorithm for Tuning PID Controllers by Optimizing Fuzzy Neural Networks

In this paper, we formulate an optimization problem of establishing a fuzzy neural network model (FNNM) for efficiently tuning PID controllers of various test plants. An existing indirect, two-stage approach used a dominant pole assignment method with P=198 to find the corresponding PID controllers. Consequently, an adaptive neuro-fuzzy inference system (ANFIS) is used to independently train th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 25  شماره 

صفحات  -

تاریخ انتشار 1999